Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
World J Diabetes ; 12(3): 215-237, 2021 Mar 15.
Article in English | MEDLINE | ID: covidwho-1148329

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a global pandemic where several comorbidities have been shown to have a significant effect on mortality. Patients with diabetes mellitus (DM) have a higher mortality rate than non-DM patients if they get COVID-19. Recent studies have indicated that patients with a history of diabetes can increase the risk of severe acute respiratory syndrome coronavirus 2 infection. Additionally, patients without any history of diabetes can acquire new-onset DM when infected with COVID-19. Thus, there is a need to explore the bidirectional link between these two conditions, confirming the vicious loop between "DM/COVID-19". This narrative review presents (1) the bidirectional association between the DM and COVID-19, (2) the manifestations of the DM/COVID-19 loop leading to cardiovascular disease, (3) an understanding of primary and secondary factors that influence mortality due to the DM/COVID-19 loop, (4) the role of vitamin-D in DM patients during COVID-19, and finally, (5) the monitoring tools for tracking atherosclerosis burden in DM patients during COVID-19 and "COVID-triggered DM" patients. We conclude that the bidirectional nature of DM/COVID-19 causes acceleration towards cardiovascular events. Due to this alarming condition, early monitoring of atherosclerotic burden is required in "Diabetes patients during COVID-19" or "new-onset Diabetes triggered by COVID-19 in Non-Diabetes patients".

2.
Rev Cardiovasc Med ; 21(4): 541-560, 2020 12 30.
Article in English | MEDLINE | ID: covidwho-1059479

ABSTRACT

Artificial Intelligence (AI), in general, refers to the machines (or computers) that mimic "cognitive" functions that we associate with our mind, such as "learning" and "solving problem". New biomarkers derived from medical imaging are being discovered and are then fused with non-imaging biomarkers (such as office, laboratory, physiological, genetic, epidemiological, and clinical-based biomarkers) in a big data framework, to develop AI systems. These systems can support risk prediction and monitoring. This perspective narrative shows the powerful methods of AI for tracking cardiovascular risks. We conclude that AI could potentially become an integral part of the COVID-19 disease management system. Countries, large and small, should join hands with the WHO in building biobanks for scientists around the world to build AI-based platforms for tracking the cardiovascular risk assessment during COVID-19 times and long-term follow-up of the survivors.


Subject(s)
Artificial Intelligence , COVID-19/epidemiology , Cardiovascular Diseases/epidemiology , Delivery of Health Care/methods , Pandemics , Risk Assessment , SARS-CoV-2 , Cardiovascular Diseases/therapy , Comorbidity , Humans , Risk Factors
3.
Comput Biol Med ; 124: 103960, 2020 09.
Article in English | MEDLINE | ID: covidwho-714312

ABSTRACT

Artificial intelligence (AI) has penetrated the field of medicine, particularly the field of radiology. Since its emergence, the highly virulent coronavirus disease 2019 (COVID-19) has infected over 10 million people, leading to over 500,000 deaths as of July 1st, 2020. Since the outbreak began, almost 28,000 articles about COVID-19 have been published (https://pubmed.ncbi.nlm.nih.gov); however, few have explored the role of imaging and artificial intelligence in COVID-19 patients-specifically, those with comorbidities. This paper begins by presenting the four pathways that can lead to heart and brain injuries following a COVID-19 infection. Our survey also offers insights into the role that imaging can play in the treatment of comorbid patients, based on probabilities derived from COVID-19 symptom statistics. Such symptoms include myocardial injury, hypoxia, plaque rupture, arrhythmias, venous thromboembolism, coronary thrombosis, encephalitis, ischemia, inflammation, and lung injury. At its core, this study considers the role of image-based AI, which can be used to characterize the tissues of a COVID-19 patient and classify the severity of their infection. Image-based AI is more important than ever as the pandemic surges and countries worldwide grapple with limited medical resources for detection and diagnosis.


Subject(s)
Betacoronavirus , Brain Injuries/epidemiology , Coronavirus Infections/epidemiology , Heart Injuries/epidemiology , Pneumonia, Viral/epidemiology , Artificial Intelligence , Betacoronavirus/pathogenicity , Betacoronavirus/physiology , Brain Injuries/classification , Brain Injuries/diagnostic imaging , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques/methods , Comorbidity , Computational Biology , Coronavirus Infections/classification , Coronavirus Infections/diagnosis , Coronavirus Infections/diagnostic imaging , Deep Learning , Heart Injuries/classification , Heart Injuries/diagnostic imaging , Humans , Machine Learning , Pandemics/classification , Pneumonia, Viral/classification , Pneumonia, Viral/diagnostic imaging , Risk Factors , SARS-CoV-2 , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL